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Testing Transformations to Achieve Approximate Normality

by

*
Raymond J. Carroll

University of North Carolina

Abstract

We propose a competitor to likelihood and significance methods for power

transformations to achieve approximate normality in a linear model . The new

method is shown in theory and a Monte-Carlo experiment to produce more robust

inferences than the likelihood method ~nd considerably more powerful (although

possibly slightly loss robust) inferences than the significance method .
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1. Introduction

Box and Cox (1964) considered methods in the linear model for achieving

approximate normality, homoscedasticity and additivity by transformations. They

hypothesized that for some A,

where X is an nxp full rank matrix, 8 is a pXl vector of constants, the errors

c are normal with covariance matrix ~
2i , and individual elements are

defined by 

1

~ (A) 
= (Y~ - 1)/A A # 0

= 1og Y~ A = O

They proposed maximum likelihood for estimating 8, ~ and A and likelihood ratio

tests for hypohteses of the form H
0: A = A0.

Andrews (1971) noted that these methods could be criticized on two counts.

First, the likelihood ratio tests are only approximately valid. Second , he

showed by example that the maximum likelihood estimate of A could be heavily

influenced by one devi ant observation , confirming the well-known tact that maxi-

mum likelihood at the normal model tends not be robust. To meet these criticisms,

Andrews developed a method (the significance method) based on F-tests with exactly

specified Type I error at the normal model and, in his example, relative insen-

sitivity to a deviant observation.

Atkinson (1973) criticized the significance method by showing in a Monte-

Carlo experiment that, at the normal distribution, the likelihood ratio test is

much more powerfu l than Andrew ’s F-test . Atkinson also proposed a method for

testing H0: A = A~ which his Monte-Carlo study indicates is essentially equivalent

at normality to the likelihood ratio test. Atkinson does not address Andrews’

point about robustness.
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We thus have a situation that the methods which are powerful for testing in

the normal model are not robust, while the method which appears to be robust is

not powerful at the normal model. Since power transformations are intended to

achieve only approximate normality, the methods mentioned above are deficient in

not considering the possibility that the errors c might be only close to normality,

with perhaps heavier tail behavior. The purpose of this paper is to present a

computationally feasible method which strikes a middle path between the existing

methods, being powerful at models including (but not limited to) the normal model

and also being relatively robust for Andrews’ example .

In Section 2 we present our method. In Section 3 we discuss a Monte-Carlo

experiment in which likelihood based methods do poorly in terms of Type I error,

Andrews ’ significance method does poorly in terms of power , and our methods

appear to be dominant.

2. A New Method

To motivate the method, we first consider the problem of estimating location

with a symmetric error distribution. Huber (1964) considered the model

Yi = 0+

where the c. are independent and identically distributed with distribution func-

tion F belonging to a class F = {G : G = (l-c) u~ + cli , H synimetric }, c > 0 and ‘~

the standard normal distribution function. Without considerations of scale, the

least favorable member of F was shown to have density function proportiona l to

exp{-p(x)}, where

p(x) = ½ x 2 ~~ < k

= k( Ix I_ k/ 2) x I > k .

LL ~.i ~~~~. ~~. ~~~~~. _ _ _ _ _ __ _ _ _
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The class of Huber M-estimates of 6 are maximum likelihood estimates of 0 under

the model with the least favorable density.

Our method follows this idea and attempts to stay as close to maximum like-

lihood as is computationally feasible. The corresponding “least favorable” like-

lihood is proportional to

(A)n Y. -x.~(2.1) L(8,o,A) = o~~ ~ exp{—p ~~— — -~~- -  + (\-l)log Y 1
}

i —I

For any given \ . we will find ~(X) and (A) by the robust regression method

proposed by Huber (1977, p. 37), so that our method is computat iona llv feasible.

Thus, we will maximize (2.1) subject to constraints defining ~(\) and ~~~ k ) .

namely for 1,(x) = dp(x)/dx,

~

(A) 
-

(2.2) n~~ ~ x~ = 0
j a l  ¼

n - x. ~(2.3) (n-pY 1 

i~ l 
P 

1 
= E~~ i4

2 (Z)  •

where ~ is the standard normal distribution and the expectation is taken undcr ~~~.

We denote the estimates of A and ~ obtained in this fashion by 
~i’ 

and

In testing a hypothesis of the form H
0: \ \

~
, the likelihood ratio

statistic under the model (2.1) is

L (~ (A 0
) , 

~~~~~ 
A0 )

1’R - -2 log L(
~
(A R), ~~~~~

under appropriate conditions which is asymptotically chi-square wi th one degret’ of freedom .

In terms of inference concerning the ~ vector , comput at iona t ly  it is most

• feasible to decide upon a transformation and then do a robust regression anal ysis

as in Hubor (1977), perhaps using F-tests as in Shrader (19Th) or psellilo-observa-

tions as in Rickel (1976).

I 
--
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A theoretjc*l assessment of the influence of outliers on this method and on

normal theory maxiata likelihood is difficult. A useful technique is the influ-

ence curve (Hampel (1974)) which has been used in location problems to describe

the effect of a sinBle observation on an estimator. If one can write the estima-

tor a~ a function T(F~) of the empirical distribution function, then the influence

curve evaluated at a point y0 and an underlying distribution F is

IC(y0,F) h a  (T((l-c)F + 
~ ~S(y0)) - T(F))/c

where L S ( v 0) is a distribution with mass one at the point y0.

To get an Idea of the etiect of an observar ion on the new metho~. we consider

the simplified case that ~ - I and ~ 0 and consider the model (2.1). If F~ is

the empirical distribut Lon function , differentiation yields that AR
where in general X (F) can be written as the solution to

f ~I(y(A (Ffl~G(y A(F))d F~(y) = f log y d F~(y)

where

G(y, A (F)) dY
~~~/dA JA A(F) (y1 log y -

Applying the definition of the influence curve , one can show

that the influence curve is proportional to

G(y0, A(F))

We thus obtain that if A (F) a 1 (no transformation necessary), f o r  large values

of y,

(1) The influence curve of normal model maximum likelihood (~p(x) = x) Is

proportiona l to y2log y.

1.~) The influence curve of the new method is proportional to y log y.

~—
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Thus, we expect our new method to be somewhat sensitive to outliers but not

nearly as much as maximum likelihood at the normal model .

To verify this hypothesis, we followed Andrews ’ lead and changed the

response .23 for poison II . treatment A (in the Box and Cox biological example)

to ~~~ The results are given in Table 1.

Table 1

The effect of one outlier on estimates of A

Ori ginal Data Chan~~d DataLikelihood Method
75% confidence interval -1.01 ‘~ A < -0.55 -0.30 \ ~

. 0.05

Maximum likelihood estimate -0.75 -0.15

Andrews Method
75% confidence interval -0.90 < A ‘ 0.05 -1.20 A ~ 0.00

Minimum F estimate -0.50 -0.50

New Method
75% confidence interval -1.02 ~ A < -0.57 -O.~4 < \ -0.20

l~stimate -0.78 -0.43

Table I backs up our influence curve calculations in showing that the new

method ’s estimate AR is more robust than the normal theory maximum likelihood

estimate. Andrews’ min imum F estima te appears s l igh t ly  more robust than A R hut

the issue is still in doubt because

(1) This may he a reflection (see Section 3) of the lack of power of

the F-test used in the significance method .

(2) Whether one uses A - -1.00 or A - .50 appears immaterial , as the latter

has significance l evels of .49 for interaction and less than 0.0001 for main

effects.

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ __ _ _
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Certainly 
~R 

is not completely insensitive to outliers, but the results in Table

I suggest that it may be of real use when compared to the very conservative

minimum F estimate.

3. A Monte-Carlo Study

For purposes of nomenclature , we w ill call the method proposed in this

article the Robust-type method . In order to assess the small sample performance

of the four procedures discussed here, we performed a Monte-Carlo experiment ,

similar to the one descr ibed by Atkinson (1973), for computing the power of

tests of H
~
: A = -l at nominal significance level a = .05 and various t rue

values of A. The specifics were as follows :

(1) The parameter values were the estimates from an addi tive model on the
observations y 1, using the Box and Cox biological data.

(2) In order to assess the methods over a wide class of distributions , four
error models were considered .

(a) N( 0,l) - standard norma l , 
~~ 

= 0, a = 1.
(b) .90N(0,l) + .1ON(0 ,a2 = 9) - standard normal wi th probability .90,

N(0,o2 = 9) with probabil ity .10.
(c)  •80N(0,l )  + .20N(0,02 = 9 ) .
(d) The t distribution with 8 degrees of freedom .

(3) For each of the t rue values 
~‘l 

the observations for e.tch simula-
tion were (expected cell mean + C* error) . Here the errors are thu four
distributions mentioned above and C = (.237) was chosen s~ that most ohserv .I.~Aons
were positive . If an observa tion was less than 0. 10, it was set to ~.).I 0.

(4) The sample sizes were N=l000 for Atkinson ’s and the signif~ canc&’ method ,
N=600 for maximum likelihood , and 150 N 250 for the robust-type, the l.~tt er
due to time considerations .

In Table 2 we l ist the results of this study . The conclusions can he

sumearized as follows :

( 1) The Atkinson and likelihood approaches are quite similar . It i s  sir .nif-
icant to note that they both have Type I errors much higher than the nominal ~~ = .05
under the two contaminated normal distributions .

(2) The Robust-type method proposed here appears preferable to the Atkinson
and Likelihood methods, because it has comparable power , with the pleasant feature
that its Type I error adheres much closer to the nominal ct = .05.

Ii
- -. ~~~~~~~- . 
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(3) The Robust-type method also appears preferable to th~ significancemethod because of the lack of power of the latter over all the distributions,
which can be best seen by looking at the slopes of a plot of A against power.

Table 2
Power of the four tests for U0: A0 -1 under three distributions . The number
of iterat ions is N~l000 for Andrews and Atkinson , N-600 for Maximum Likelihood ,
and 150 ‘. N < 250 for the Robust-Type method . Nominal type I error (when

A — -1.00) is ~ — .05.

A Andrews Atk inson Maximum Likelihood Robust-Type

-2.0 .539 .7t 2 .779 . 772

-1.5 .268 .443 .450 .461

-1.0 .044 .058 .045 .048
- .75 .305 .453 .440 .402
- .60 .807 .931 .952 .942

.90 N(0,l) + .10 N(O,9)

-2.0 .363 .615 .599

-1.5 .195 .404 .368 .379

-1.0 .048 .178 .167 .100
- .75 .209 .393 .388 .353
- .60 .589 .832 .844 .s64

.80 N( 0, 1) + .20 N(0,9)

.268 .580 .548 . S49

-1.5 .152 .406 .375 .348

-1 .0 .048 .198 .200 .116

- .75 .1 63 .371 .338

- .60 .466 .780 .728 . 11 
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t ,8 degrees of freedom

A Andrews Atkinscn Maximum Likelihood Robust Type
-2.00 - - .688 .686

-1.5 — - .376 . 341

-1. 0 - - .072 .047
- .75 - - .388 .410

- .60 - - .952 .888

The simulation results show that the Robust-type method proposed here is

preferable to the likelihood method for inference about the parameter A . The

same preference held when making inferences abou t ~ when the nul l  hypothesis

1I~ : \ = -l is true but the errors are slight ly heavier-tailed than the normal

model. In Table 3 below we list for the intercept parameter the values of

n~ (# of simu1ations)~ (standard error for intercept) when the true value of

A = -1.00, with n = 48.

Table 3

Normal standard errors for intercept when A = -1.00

Maximum Likelihood Robust-type Method

Standard Normal 3.04 3.12

.90 N(0,1) + .10 N(0,9) 4.4S 4.01

.80 N(O,1) + .20 N(0,9) s.i ~ 4.t-~2

Th us , the Robust-type method leads to more robust estimates of the ~

vec tor than tha t obta ined by maximum likelihood .

4. Discussion

We have proposed a method which is essentially a constrained likelihood

method for  a model with heavier tails than the norma l model . This  R o h u s t - t v p L ’

method appears p re fe rab le  to  norma l theory I i k e l  ihouti approaches in t ernis ol

inference about A and 8, at  least  wh en Q~~I ’ cons i tier ’; the possil ’ i i  i t y  ~f e r ror

I
— — - - - . .  - --——-— —.~ ————~~ .—.— ~~~~—. - —.-—- -“—------- - ., - , ..--.—--.—- - - . .  .— ~~~~~~~~~~~~~~~~~~~~~~~~~ J
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models other than the normal. The Robust-type method seems preferable to the

significance method because of the lack of power of the latter and the ability

of the former to stay near its nominal Type I error (for inferences about A)

over a wide range of distributions . The new method appears slightly less robust

agains t out l iers than the si6nificance method, but this defec t does not appear

to be very serious. 

— --— ,.-—- --—--.— , - . ,—.--- .---... ...-.-————.-,.*—,~~~~.——————— .-..- . -- 
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